“If you want to be a good data scientist, you should spend ~49% of your time developing your statistical intuition (i.e. how to ask good questions of the data), and ~49% of your time on domain knowledge (improving overall understanding of your field). Only ~2% on methods per se.” Nate Silver, a statistician and writer who analyzes sports, elections and more.
In this week’s podcast Jon Prial is joined by Tara Khazaei, Chief Data Scientist, National AI Team, Customer Success Unit at Microsoft. Jon and Tara talk about how domain knowledge, as well as statistical intuition, make for more successful outcomes in machine learning projects. They discuss performance through the lens of projects Tara and her team have led at Microsoft.
In this episode you’ll hear:
Who is Taraneh Khazaei?
Taraneh Khazaei is Chief Data Scientist on the National AI Team, Customer Success Unit at Microsoft. In this role, she advises Microsofts clients on how to adopt machine learning. Working with clients, Tara has researched the state of the art of speech to text methods and technologies, developed deep sequential modeling methods (e.g., use of embeddings, RNNs, and transformer networks) on terabytes of clickstream data to model and predict user online behavior and designed and developed an ML pipeline to predict the market price of a vehicle.
When the US House of Representatives passed a controversial law about Internet privacy earlier this year, several news outlets published security advice suggesting that...
Manufacturing hasn't really changed all of that much in the past 75 years, with one key exception. Today we're capturing vast amounts of data...
Every year, millions of older Americans are readmitted to the hospital, costing Medicare (and tax payers) billions of dollars. And yet 76 percent of...